Linear Approximation Math 102 Section 107

Krishanu Sankar

September 27, 2017

Calculate the Derivative!

Q1.
$$h(x) = \frac{1}{\sqrt{x^2+2}}$$
. Then $h'(x) =$

A.
$$h'(x) = \frac{-1}{2(x^2+2)^{3/2}}$$
 B. $h'(x) = \frac{-x}{(x^2+2)^{3/2}}$

C.
$$h'(x) = rac{-1}{2(x^2+2)}$$
 D. Don't know, explain

Calculate the Derivative!

Q1.
$$h(x) = \frac{1}{\sqrt{x^2+2}}$$
. Then $h'(x) =$

A.
$$h'(x) = \frac{-1}{2(x^2+2)^{3/2}}$$
 B. $h'(x) = \frac{-x}{(x^2+2)^{3/2}}$

C.
$$h'(x) = \frac{-1}{2(x^2+2)}$$
 D. Don't know, explain

Answer: B. $\frac{1}{\sqrt{x^2+2}} = (x^2+2)^{-1/2}$. Use the Chain rule: h(x) = f(g(x)) with $g(x) = x^2 + 2$ and $f(x) = x^{-1/2}$.

Q2. What **function** f(x) should we be using linear approximation on to approximate $\sqrt[3]{995}$?

A.
$$f(x) = x^3$$
 B. $f(x) = \sqrt[3]{x}$
C. $f(x) = x^3 - 5$ D. Other

Q2. What **function** f(x) should we be using linear approximation on to approximate $\sqrt[3]{995}$?

A.
$$f(x) = x^3$$
 B. $f(x) = \sqrt[3]{x}$
C. $f(x) = x^3 - 5$ D. Other

Answer: B, $f(x) = \sqrt[3]{x}$.

Q3. We will draw the tangent line at x = a. What is a good value of a at which to do this?

A.
$$a = 10$$
 B. $a = 995$

C.
$$a = \sqrt[3]{995}$$
 D. Other

Q3. We will draw the tangent line at x = a. What is a good value of a at which to do this?

A.
$$a = 10$$
 B. $a = 995$

C.
$$a = \sqrt[3]{995}$$
 D. Other

Answer: D, a = 1000. B doesn't work because in order to calculate there, we'd need to know $\sqrt[3]{995}$ already! A and C are thinking about the value of f(x), not x, so they don't make sense.

Q4. Is the linear approximation larger than $\sqrt[3]{995}$, or smaller?

A. Approximation $> \sqrt[3]{995}$

B. Approximation $<\sqrt[3]{995}$

Q4. Is the linear approximation larger than $\sqrt[3]{995}$, or smaller?

A. Approximation $> \sqrt[3]{995}$

B. Approximation $<\sqrt[3]{995}$

Answer: B. It is an underestimate because the function $\sqrt[3]{x}$ is **concave down** at x = 1000.