Linear Approximation Math 102 Section 107

Krishanu Sankar

September 27, 2017

Calculate the Derivative!

$$
\begin{aligned}
& \text { Q1. } h(x)=\frac{1}{\sqrt{x^{2}+2}} \text {. Then } h^{\prime}(x)= \\
& \begin{array}{ll}
\text { A. } h^{\prime}(x)=\frac{-1}{2\left(x^{2}+2\right)^{3 / 2}} & \text { B. } h^{\prime}(x)=\frac{-x}{\left(x^{2}+2\right)^{3 / 2}} \\
\text { C. } h^{\prime}(x)=\frac{-1}{2\left(x^{2}+2\right)} & \text { D. Don't know, explain }
\end{array}
\end{aligned}
$$

Calculate the Derivative!

$$
\text { Q1. } h(x)=\frac{1}{\sqrt{x^{2}+2}} \text {. Then } h^{\prime}(x)=
$$

A. $h^{\prime}(x)=\frac{-1}{2\left(x^{2}+2\right)^{3 / 2}}$

$$
\text { B. } h^{\prime}(x)=\frac{-x}{\left(x^{2}+2\right)^{3 / 2}}
$$

$\begin{array}{ll}\text { C. } h^{\prime}(x)=\frac{-1}{2\left(x^{2}+2\right)} & \text { D. Don't know, explain }\end{array}$

Answer: B. $\frac{1}{\sqrt{x^{2}+2}}=\left(x^{2}+2\right)^{-1 / 2}$. Use the Chain rule: $h(x)=f(g(x))$ with $g(x)=x^{2}+2$ and

$$
f(x)=x^{-1 / 2}
$$

Linear Approximation of $\sqrt[3]{995}$

Q2. What function $f(x)$ should we be using linear approximation on to approximate $\sqrt[3]{995}$?

$$
\begin{array}{ll}
\text { A. } f(x)=x^{3} & \text { B. } f(x)=\sqrt[3]{x} \\
\text { C. } f(x)=x^{3}-5 & \text { D. Other }
\end{array}
$$

Linear Approximation of $\sqrt[3]{995}$

Q2. What function $f(x)$ should we be using linear approximation on to approximate $\sqrt[3]{995}$?

$$
\begin{array}{ll}
\text { A. } f(x)=x^{3} & \text { B. } f(x)=\sqrt[3]{x} \\
\text { C. } f(x)=x^{3}-5 & \text { D. Other }
\end{array}
$$

Answer: B, $f(x)=\sqrt[3]{x}$.

Linear Approximation of $\sqrt[3]{995}$

Q3. We will draw the tangent line at $x=a$. What is a good value of a at which to do this?

$$
\begin{array}{ll}
\text { A. } a=10 & \text { B. } a=995 \\
\text { C. } a=\sqrt[3]{995} & \text { D. Other }
\end{array}
$$

Linear Approximation of $\sqrt[3]{995}$

Q3. We will draw the tangent line at $x=a$. What is a good value of a at which to do this?

$$
\begin{array}{ll}
\text { A. } a=10 & \text { B. } a=995 \\
\text { C. } a=\sqrt[3]{995} & \text { D. Other }
\end{array}
$$

Answer: D, $a=1000$. B doesn't work because in order to calculate there, we'd need to know $\sqrt[3]{995}$ already! A and C are thinking about the value of $f(x)$, not x, so they don't make sense.

Linear Approximation of $\sqrt[3]{995}$

Q4. Is the linear approximation larger than $\sqrt[3]{995}$, or smaller?
A. Approximation $>\sqrt[3]{995}$
B. Approximation $<\sqrt[3]{995}$

Linear Approximation of $\sqrt[3]{995}$

Q4. Is the linear approximation larger than $\sqrt[3]{995}$, or smaller?

> A. Approximation $>\sqrt[3]{995}$
> B. Approximation $<\sqrt[3]{995}$

Answer: B. It is an underestimate because the function $\sqrt[3]{x}$ is concave down at $x=1000$.

